A Comprehensive Explanation of Global Convergence in Modern Hopfield Networks

Jiongjiong Li jiongjiongfly@gmail.com

October 15, 2024

Contents

1	Introduction	3
2	Notations	3
3	Softmax Function	4
4	Log-Sum-Exp Function	4
5	Lemma 1 LSE Gradient	4
6	Lemma 2 LSE Hessian	4
7	Lemma 3 LSE Hessian is Symmetric and Positive Semi-Definite	5
8	Lemma 4 LSE is Convex	5
9	Definitions9.1 Point-to-set Map9.2 Closed9.3 Fixed Point9.4 Uniformly Compact9.5 Monotonic9.6 Global Convergence	5 6 6 6 7 7
10	Modern Hopfield Network	7
11	New Update Rule	8
12	Lemma 5 CCCP Algorithm	8
13	Lemma 6 Convex Concave Decomposition	9
14	Lemma 7 Constraint Set	10
15	Lemma 8 Constraint Function	10
16	Lemma 9 Convergence Theorem 1	11

17	Theorem 1 Global Convergence: Energy	12
18	Lemma 10 MM Algorithm	13
19	Lemma 11 Hopfield MM Algorithm Update Rule	15
20	Lemma 12 Closedness Sufficient Condition	15
21	Lemma 13 Convergence Theorem 2	17
22	Lemma 14 Fixed Points Sufficient Condition	18
23	Lemma 15 Stationary Points Sufficient Condition	18
24	Lemma 16 Convergence of Adjacent Point Differences	19
25	Lemma 17 Compactness of Limit Points	21
26	Lemma 18 Connectedness of Limit Points	22
27	Theorem 2 Global Convergence: Stationary Points	25

1 Introduction

This article provides a comprehensive explanation of the global convergence theory of the Modern Hopfield Network [1], covering energy and stationary points. It also extends the discussion of the initial point ξ_0 from a bounded subset in the original paper to any vector in \mathbb{R}^d .

2 Notations

- 1. The *p*-norm of a vector is denoted: $\|\cdot\|_p$, $1 \le p$
- 2. Let $\beta > 0, \beta \in \mathbb{R}$
- 3. Let $[N] = \{1, \dots, N\}$

3 Softmax Function

$$\mathbf{p}(\mathbf{x}) = \operatorname{softmax}(\beta \mathbf{x})$$

$$p_i = \left[\operatorname{softmax}(\beta \mathbf{x})\right]_i = \frac{\exp(\beta x_i)}{\sum_{k=1}^N \exp(\beta x_k)}$$
(1)

where $\mathbf{x}_i \in \mathbb{R}^N$.

4 Log-Sum-Exp Function

lse
$$(\beta, \mathbf{x}) = \beta^{-1} \ln \left(\sum_{k=1}^{N} \exp(\beta x_k) \right)$$
 (2)

where $\mathbf{x}_i \in \mathbb{R}^N$.

5 Lemma 1 LSE Gradient

$$\nabla_{\mathbf{x}} \operatorname{lse}(\beta, \mathbf{x}) = \operatorname{softmax}(\beta \mathbf{x}) \tag{3}$$

where $\mathbf{x} \in \mathbb{R}^N$.

$$\nabla_{\boldsymbol{\xi}} \operatorname{lse} \left(\beta, \boldsymbol{X}^T \boldsymbol{\xi} \right) = \boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^T \boldsymbol{\xi} \right)$$
 (4)

where $\boldsymbol{X} \in \mathbb{R}^{d \times N}, \boldsymbol{\xi} \in \mathbb{R}^d$.

6 Lemma 2 LSE Hessian

The Jacobian $J_s(\mathbf{x})$ of $\mathbf{p}(\mathbf{x}) = \operatorname{softmax}(\beta \mathbf{x})$ is

$$J_{s}(\mathbf{x}) = \frac{\partial \operatorname{softmax}(\beta \mathbf{x})}{\partial \mathbf{x}} = \beta \left(\operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^{T}\right)$$
 (5)

where $\mathbf{x} \in \mathbb{R}^N$.

The Jacobian $J(\boldsymbol{\xi})$ of $\boldsymbol{X}\mathbf{p}\left(\boldsymbol{X}^{T}\boldsymbol{\xi}\right)=\boldsymbol{X}$ softmax $\left(\beta\boldsymbol{X}^{T}\boldsymbol{\xi}\right)$ is

$$J(\boldsymbol{\xi}) = \frac{\partial \left(\boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^{T} \boldsymbol{\xi} \right) \right)}{\partial \boldsymbol{\xi}} = \beta \boldsymbol{X} \left(\operatorname{diag} \left(\mathbf{p} \right) - \mathbf{p} \mathbf{p}^{T} \right) \boldsymbol{X}^{T} = \boldsymbol{X} J_{s} \boldsymbol{X}^{T}$$
(6)

where $\boldsymbol{X} \in \mathbb{R}^{d \times N}, \boldsymbol{\xi} \in \mathbb{R}^d$.

7 Lemma 3 LSE Hessian is Symmetric and Positive Semi-Definite

The Jacobian $J_s(\mathbf{x})$ of $\mathbf{p}(\mathbf{x}) = \operatorname{softmax}(\beta \mathbf{x})$ is symmetric and positive semi-definite where $\mathbf{x} \in \mathbb{R}^N$.

The Jacobian $J(\boldsymbol{\xi})$ of $\boldsymbol{X}\mathbf{p}\left(\boldsymbol{X}^T\boldsymbol{\xi}\right) = \boldsymbol{X}\operatorname{softmax}\left(\beta\boldsymbol{X}^T\boldsymbol{\xi}\right)$ is symmetric and positive semi-definite where $\boldsymbol{X} \in \mathbb{R}^{d \times N}, \boldsymbol{\xi} \in \mathbb{R}^d$.

Proof. According to 5, 6, they are symmetric. Given any $\mathbf{x} \in \mathbb{R}^N$, we have

$$\mathbf{x}^{T}J_{s}\mathbf{x} = \beta \mathbf{x}^{T} \left(\operatorname{diag} \left(\mathbf{p} \right) - \mathbf{p}\mathbf{p}^{T} \right) \mathbf{x} = \beta \left[\sum_{i} p_{i}x_{i}^{2} - \left(\sum_{i} p_{i}x_{i} \right)^{2} \right] \geqslant 0$$
 (7)

Given any $\boldsymbol{\xi} \in \mathbb{R}^d$, we have

$$\boldsymbol{\xi}^{T} J \boldsymbol{\xi} = \boldsymbol{\xi}^{T} \boldsymbol{X} J_{s} \boldsymbol{X}^{T} \boldsymbol{\xi} = (\boldsymbol{X}^{T} \boldsymbol{\xi})^{T} J_{s} (\boldsymbol{X}^{T} \boldsymbol{\xi}) \geqslant 0$$
 (8)

Hence they are positive semi-definite.

8 Lemma 4 LSE is Convex

lse (β, \mathbf{x}) is convex with respect to \mathbf{x} where $\mathbf{x} \in \mathbb{R}^N$. lse $(\beta, \mathbf{X}^T \boldsymbol{\xi})$ is convex with respect to $\boldsymbol{\xi}$ where $\mathbf{X} \in \mathbb{R}^{d \times N}, \boldsymbol{\xi} \in \mathbb{R}^d$.

Proof. The Jacobian of the softmax is Hessian of the lse according to 3, 4. The Jacobian of the softmax is positive semi-definite according to Lemma 3. Therefore lse is convex.

9 Definitions

9.1 Point-to-set Map

A point-to-set map A from a set X into a set Y is defined as

$$\mathcal{A}: X \to \mathscr{P}(Y) \tag{9}$$

which assigns a subset of Y to each point of X, where $\mathscr{P}(Y)$ denotes the power set of Y.

9.2 Closed

Suppose X and Y are two topological spaces. A point-to-set map $\mathcal{A}: X \to \mathscr{P}(Y)$ is said to be closed at $\mathbf{x}_0 \in X$ if:

$$\begin{vmatrix}
\mathbf{x}_{t} \to \mathbf{x}_{0} \text{ as } t \to \infty \\
\mathbf{y}_{t} \to \mathbf{y}_{0} \text{ as } t \to \infty \\
\mathbf{x}_{t} \in X \\
\mathbf{y}_{t} \in \mathcal{A}(\mathbf{x}_{t})
\end{vmatrix} \implies \mathbf{y}_{0} \in \mathcal{A}(\mathbf{x}_{0}) \tag{10}$$

A point-to-set map $\mathcal A$ is said to be closed on $S\subset X$ if it is closed at every point of S.

9.3 Fixed Point

A fixed point of a point-to-set map

$$\mathcal{A}: X \to \mathscr{P}(X) \tag{11}$$

is any point $\mathbf{x} \in X$ for which

$$\mathcal{A}\left(\mathbf{x}\right) = \left\{\mathbf{x}\right\} \tag{12}$$

A generalized fixed point of \mathcal{A} is any point $\mathbf{x} \in X$ for which

$$\mathbf{x} \in \mathcal{A}\left(\mathbf{x}\right) \tag{13}$$

9.4 Uniformly Compact

A point-to-set map $\mathcal{A}: X \to \mathscr{P}(Y)$ is said to be uniformly compact on X if there exists a compact set $H \subset Y$ independent of \mathbf{x} such that:

$$\mathcal{A}(\mathbf{x}) \subset H, \forall \mathbf{x} \in X \tag{14}$$

9.5 Monotonic

Let

$$E: X \to \mathbb{R} \tag{15}$$

be a continuous function. The map

$$\mathcal{A}: X \to \mathscr{P}(X) \tag{16}$$

is said to be monotonic with respect to E at $x \in X$ if

$$\forall \mathbf{y} \in \mathcal{A}(\mathbf{x}), \mathbf{E}(\mathbf{y}) \leqslant \mathbf{E}(\mathbf{x}) \tag{17}$$

 \mathcal{A} is said to be strictly monotonic with respect to E at $\mathbf{x} \in X$ if

$$A(\mathbf{x}) \neq {\mathbf{x}} \implies \forall \mathbf{y} \in A(\mathbf{x}), E(\mathbf{y}) < E(\mathbf{x})$$
 (18)

9.6 Global Convergence

Let X be a set and $\boldsymbol{\xi}_0 \in X$ a given point. Then an algorithm, \mathcal{A} , with initial point $\boldsymbol{\xi}_0$ is a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ which generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ via the rule

$$\boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), t = 0, 1, \cdots$$
 (19)

 \mathcal{A} is said to be globally convergent if: Given any chosen initial point $\boldsymbol{\xi}_0$, the sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ generated by $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t), t=0,1,\cdots$ (or a subsequence) converges to a point for which a necessary condition of optimality holds.

10 Modern Hopfield Network

We have patterns that are represented by the matrix:

$$\boldsymbol{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N) \tag{20}$$

where $\mathbf{x}_i \in \mathbb{R}^d$. Thus $\boldsymbol{X} \in \mathbb{R}^{d \times N}$. The largest norm of a pattern is:

$$M = \max_{i \in [N]} \left\| \mathbf{x}_i \right\|_2 \tag{21}$$

The query or state of the Hopfield Network is $\xi \in \mathbb{R}^d$. Define energy $E(\xi)$ for a continuous query or state ξ :

$$E(\boldsymbol{\xi}) = -\operatorname{lse}\left(\beta, \boldsymbol{X}^{T}\boldsymbol{\xi}\right) + \frac{1}{2}\boldsymbol{\xi}^{T}\boldsymbol{\xi} + \beta^{-1}\ln N + \frac{1}{2}M^{2}$$
(22)

11 New Update Rule

$$\boldsymbol{\xi}_{t+1} = \mathcal{F}(\boldsymbol{\xi}_t) = \boldsymbol{X}\mathbf{p} = \boldsymbol{X}\operatorname{softmax}(\beta \boldsymbol{X}^T \boldsymbol{\xi}_t)$$
 (23)

where

$$\mathbf{p} = \operatorname{softmax} \left(\beta \mathbf{X}^T \boldsymbol{\xi}_t \right) \tag{24}$$

12 Lemma 5 CCCP Algorithm

Consider an energy function $E: X \to \mathbb{R}$:

$$E(\boldsymbol{\xi}) = E_1(\boldsymbol{\xi}) - E_2(\boldsymbol{\xi}) \tag{25}$$

where E_1 and E_2 are differentiable convex functions of ξ respectively and X is a convex set. Then the discrete CCCP (Concave Convex Procedure Algorithm) algorithm [2]

$$\boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), t = 0, 1, \cdots$$
 (26)

given by:

$$\nabla_{\boldsymbol{\xi}} \operatorname{E}_{1} \left(\boldsymbol{\xi}_{t+1} \right) = \nabla_{\boldsymbol{\xi}} \operatorname{E}_{2} \left(\boldsymbol{\xi}_{t} \right) \tag{27}$$

guarantees A to be monotonic with respect to E.

In addition, if E_1 or E_2 is strictly convex function, and $\boldsymbol{\xi}_{t+1} \neq \boldsymbol{\xi}_t$, then

$$\mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right) < \mathrm{E}\left(\boldsymbol{\xi}_{t}\right) \tag{28}$$

Proof. E_1 and E_2 are convex functions, so that $\forall t \ge 0$,

$$\begin{array}{l}
\operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) \geqslant \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) + \left(\nabla \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right)\right)^{T}\left(\boldsymbol{\xi}_{t} - \boldsymbol{\xi}_{t+1}\right) \\
\operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) \geqslant \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) + \left(\nabla \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right)\right)^{T}\left(\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_{t}\right) \\
\nabla \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) = \nabla \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
\Longrightarrow \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) + \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) \geqslant \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) + \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
\Longrightarrow \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) - \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) - \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
\Longrightarrow \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant \operatorname{E}\left(\boldsymbol{\xi}_{t}\right)
\end{array} \tag{29}$$

Therefore A is monotonic with respect to E.

In addition, if E_1 is strictly convex function, and $\boldsymbol{\xi}_{t+1} \neq \boldsymbol{\xi}_t$, then

$$\begin{aligned}
& \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) > \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) + \left(\nabla \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right)\right)^{T}\left(\boldsymbol{\xi}_{t} - \boldsymbol{\xi}_{t+1}\right) \\
& \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) \geqslant \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) + \left(\nabla \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right)\right)^{T}\left(\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_{t}\right) \\
& \nabla \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) = \nabla \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
& \Longrightarrow \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) + \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) > \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) + \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
& \Longrightarrow \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t+1}\right) - \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t+1}\right) < \operatorname{E}_{1}\left(\boldsymbol{\xi}_{t}\right) - \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right) \\
& \Longrightarrow \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) < \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) < \operatorname{E}\left(\boldsymbol{\xi}_{t}\right) \\
& \Longrightarrow \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) < \operatorname{E}\left(\boldsymbol{\xi}_{t}\right)
\end{aligned} \tag{30}$$

13 Lemma 6 Convex Concave Decomposition

The energy function $E(\xi)$ is the difference of a strictly convex function $E_1(\xi)$ and a convex function $E_2(\xi)$:

$$E(\boldsymbol{\xi}) = E_{1}(\boldsymbol{\xi}) - E_{2}(\boldsymbol{\xi})$$

$$E_{1}(\boldsymbol{\xi}) = \frac{1}{2}\boldsymbol{\xi}^{T}\boldsymbol{\xi} + \beta^{-1}\ln N + \frac{1}{2}M^{2} = \frac{1}{2}\boldsymbol{\xi}^{T}\boldsymbol{\xi} + C_{1}$$

$$E_{2}(\boldsymbol{\xi}) = \operatorname{lse}(\beta, \boldsymbol{X}^{T}\boldsymbol{\xi})$$
(31)

where C_1 does not depend on $\boldsymbol{\xi}$.

Proof. $\frac{1}{2} \boldsymbol{\xi}^T \boldsymbol{\xi}$ is a strictly convex function.

According to Lemma 4, lse is a convex function.

14 Lemma 7 Constraint Set

Let

$$S = \{ \xi | \| \xi \|_2 \leqslant M \} \tag{32}$$

which is a convex and compact set.

Then

$$\forall t \geqslant 0, \boldsymbol{\xi}_{t+1} \in S \tag{33}$$

where ξ_{t+1} is from update rule 23.

Proof.

$$\|\boldsymbol{\xi}_{t+1}\|_{2} = \|\boldsymbol{X}\mathbf{p}\|_{2} = \left\|\sum_{i=1}^{N} p_{i}\mathbf{x}_{i}\right\|_{2} \leqslant \sum_{i=1}^{N} p_{i} \|\mathbf{x}_{i}\|_{2} \leqslant \sum_{i=1}^{N} p_{i}M = M$$
 (34)

15 Lemma 8 Constraint Function

Define function

$$c(\boldsymbol{\xi}) = \boldsymbol{\xi}^T \boldsymbol{\xi} - M \tag{35}$$

Then

$$S = \{ \boldsymbol{\xi} : c(\boldsymbol{\xi}) \leqslant 0 \} \tag{36}$$

where S is defined by 32.

Proof.

$$\forall \boldsymbol{\xi}, c(\boldsymbol{\xi}) \leqslant 0 \iff \boldsymbol{\xi} \in S \tag{37}$$

16 Lemma 9 Convergence Theorem 1

Let a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0 \in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ through the iteration $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t)$. Suppose

- 1. All points $\xi_{t+1}, t \ge 0$ are in a compact set $\Omega \subset X$.
- 2. A is monotonic with respect to a continuous function E.

Then $E(\xi_t) \to E(\xi^*)$ for $t \to \infty$ and a limit point ξ^* .

Proof. All points $\xi_{t+1}, t \ge 0$ are in a compact set $\Omega \subset X$. Hence $\{\xi_t\}_{t=0}^{\infty}$ must have a convergent subsequence

$$\boldsymbol{\xi}_{tk} \to \boldsymbol{\xi}^*, \text{ as } k \to \infty$$
 (38)

where $\xi^* \in \Omega$ is a limit point. Continuity of E provides

$$\mathrm{E}\left(\boldsymbol{\xi}_{t_{k}}\right) \to \mathrm{E}\left(\boldsymbol{\xi}^{*}\right), \text{ as } k \to \infty$$
 (39)

 \mathcal{A} is monotonic with respect to E. Hence

$$\forall t \geqslant 0, \mathcal{E}(\boldsymbol{\xi}_t) \geqslant \mathcal{E}(\boldsymbol{\xi}^*) \tag{40}$$

Using 39 and the definition of limit, given $\varepsilon_1 > 0$, there is a t_{ε_1} such that

$$E\left(\boldsymbol{\xi}_{t_{\varepsilon_{1}}}\right) < E\left(\boldsymbol{\xi}^{*}\right) + \varepsilon_{1} \tag{41}$$

 \mathcal{A} is monotonic with respect to E, then

$$\forall t > t_{\varepsilon_1}, \mathrm{E}\left(\boldsymbol{\xi}_t\right) \leqslant \mathrm{E}\left(\boldsymbol{\xi}_{t_{\varepsilon_1}}\right) < \mathrm{E}\left(\boldsymbol{\xi}^*\right) + \varepsilon_1$$
 (42)

40, 42 then yield

$$\forall t > t_{\varepsilon_1}, |\mathbf{E}(\boldsymbol{\xi}_t) - \mathbf{E}(\boldsymbol{\xi}^*)| < \varepsilon_1$$
(43)

Therefore

$$E(\boldsymbol{\xi}_t) \to E(\boldsymbol{\xi}^*)$$
, as $t \to \infty$ (44)

17 Theorem 1 Global Convergence: Energy

The update rule 23 converges globally: For $\boldsymbol{\xi}_{t+1} = \mathcal{F}(\boldsymbol{\xi}_t)$, the energy $\mathrm{E}(\boldsymbol{\xi}_t) \to \mathrm{E}(\boldsymbol{\xi}^*)$ for $t \to \infty$ and a limit point $\boldsymbol{\xi}^*$.

Proof. Define minimization problem:

$$\min_{\boldsymbol{\xi}} E(\boldsymbol{\xi}) = \min_{\boldsymbol{\xi}} \left(E_1(\boldsymbol{\xi}) - E_2(\boldsymbol{\xi}) \right) \tag{45}$$

where E_1 , E_2 are defined by 31.

1. Applying CCCP Algorithm

According to 27, let

$$\nabla_{\boldsymbol{\xi}} \operatorname{E}_{1} \left(\boldsymbol{\xi}_{t+1} \right) = \nabla_{\boldsymbol{\xi}} \operatorname{E}_{2} \left(\boldsymbol{\xi}_{t} \right) \tag{46}$$

Using 4, 31, the resulting update rule is:

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^T \boldsymbol{\xi}_t \right) \tag{47}$$

which is equivalent to 23.

Let

$$\mathcal{A}(\boldsymbol{\xi}_t) = \left\{ \boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^T \boldsymbol{\xi}_t \right) \right\}$$
 (48)

2. Energy Convergence

Since

- (a) According to 32, 33, all points ξ_{t+1} , $t \ge 0$ are in a compact set S.
- (b) According to Lemma 5, A is monotonic with respect to E.
- (c) Obviously E is continuous.

then using Lemma 9

$$E(\boldsymbol{\xi}_t) \to E(\boldsymbol{\xi}^*), \text{ as } t \to \infty$$
 (49)

18 Lemma 10 MM Algorithm

Consider the optimization function $E: X \to \mathbb{R}$:

$$E(\boldsymbol{\xi}) = E_1(\boldsymbol{\xi}) - E_2(\boldsymbol{\xi}), \boldsymbol{\xi} \in \Omega$$
(50)

where E_1 and E_2 are both convex, E_2 is differentiable, and $\Omega \subset X$ is a convex set. Let

$$g(\boldsymbol{\xi}, \boldsymbol{\xi}_t) = \mathcal{E}_1(\boldsymbol{\xi}) - \mathcal{E}_2(\boldsymbol{\xi}_t) - (\nabla_{\boldsymbol{\xi}} \mathcal{E}_2(\boldsymbol{\xi}_t))^T (\boldsymbol{\xi} - \boldsymbol{\xi}_t)$$
 (51)

Then the MM (Majorization-Minimization) algorithm [3]

$$\boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right) = \underset{\boldsymbol{\xi} \in \Omega}{\operatorname{arg \, min}} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right)$$

$$= \underset{\boldsymbol{\xi} \in \Omega}{\operatorname{arg \, min}} \left(\operatorname{E}_{1}\left(\boldsymbol{\xi}\right) - \left(\nabla_{\boldsymbol{\xi}} \operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right)\right)^{T} \boldsymbol{\xi} \right)$$

$$t = 0, 1, \dots$$
(52)

guarantees \mathcal{A} to be monotonic with respect to E.

In addition, if E_1 is strictly convex, then A is strictly monotonic with respect to E.

Proof. Since E_2 is convex and differentiable, then the first order characterization of convexity holds:

$$E_{2}(\boldsymbol{\xi}) \geqslant E_{2}(\boldsymbol{\xi}_{t}) + (\nabla_{\boldsymbol{\xi}} E_{2}(\boldsymbol{\xi}_{t}))^{T} (\boldsymbol{\xi} - \boldsymbol{\xi}_{t})$$
(53)

Therefore:

$$E(\boldsymbol{\xi}) = E_{1}(\boldsymbol{\xi}) - E_{2}(\boldsymbol{\xi})$$

$$\leq E_{1}(\boldsymbol{\xi}) - E_{2}(\boldsymbol{\xi}_{t}) - (\nabla_{\boldsymbol{\xi}} E_{2}(\boldsymbol{\xi}_{t}))^{T} (\boldsymbol{\xi} - \boldsymbol{\xi}_{t})$$

$$= g(\boldsymbol{\xi}, \boldsymbol{\xi}_{t})$$
(54)

According to 52

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), g\left(\boldsymbol{\xi}_{t+1}, \boldsymbol{\xi}_{t}\right) \leqslant g\left(\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t}\right) \tag{55}$$

Using 51, 54, 55

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant g\left(\boldsymbol{\xi}_{t+1}, \boldsymbol{\xi}_{t}\right) \leqslant g\left(\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t}\right) = \operatorname{E}\left(\boldsymbol{\xi}_{t}\right) \tag{56}$$

Thus

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), \operatorname{E}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant \operatorname{E}\left(\boldsymbol{\xi}_{t}\right) \tag{57}$$

Therefore A is monotonic with respect to E.

If E_1 is strictly convex with respect to ξ , then $g(\xi, \xi_t)$ is also strictly convex with respect to ξ according to its definition 51. Since Ω is convex, then there exists only one minimum in 52, which is the global minimum. Hence

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), \boldsymbol{\xi}_{t+1} \neq \boldsymbol{\xi}_{t} \implies g\left(\boldsymbol{\xi}_{t+1}, \boldsymbol{\xi}_{t}\right) < g\left(\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t}\right) \tag{58}$$

Using 51, 54, 58

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), \boldsymbol{\xi}_{t+1} \neq \boldsymbol{\xi}_{t} \Longrightarrow \\ \mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant g\left(\boldsymbol{\xi}_{t+1}, \boldsymbol{\xi}_{t}\right) < g\left(\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t}\right) = \mathrm{E}\left(\boldsymbol{\xi}_{t}\right)$$
(59)

That is

$$\forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right), \boldsymbol{\xi}_{t+1} \neq \boldsymbol{\xi}_{t} \implies \mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right) < \mathrm{E}\left(\boldsymbol{\xi}_{t}\right) \tag{60}$$

If $\mathcal{A}\left(\boldsymbol{\xi}_{t}\right)\neq\left\{ \boldsymbol{\xi}_{t}\right\}$, suppose $\boldsymbol{\xi}_{t}\in\mathcal{A}\left(\boldsymbol{\xi}_{t}\right)$, then $\exists\boldsymbol{\xi}_{t+1}^{'}\in\mathcal{A}\left(\boldsymbol{\xi}_{t}\right),\boldsymbol{\xi}_{t+1}^{'}\neq\boldsymbol{\xi}_{t}$. Using 58

$$g\left(\boldsymbol{\xi}_{t+1}^{\prime}, \boldsymbol{\xi}_{t}\right) < g\left(\boldsymbol{\xi}_{t}, \boldsymbol{\xi}_{t}\right) \tag{61}$$

Hence

$$\boldsymbol{\xi}_{t+1} \notin \mathcal{A}\left(\boldsymbol{\xi}_{t}\right) = \underset{\boldsymbol{\xi} \in \Omega}{\operatorname{arg\,min}} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right) \tag{62}$$

which is a contradiction. Thus if $\mathcal{A}\left(\boldsymbol{\xi}_{t}\right)\neq\left\{\boldsymbol{\xi}_{t}\right\}$, then $\boldsymbol{\xi}_{t+1}\not\in\mathcal{A}\left(\boldsymbol{\xi}_{t}\right)$. That is $\forall\boldsymbol{\xi}_{t+1}\in\mathcal{A}\left(\boldsymbol{\xi}_{t}\right),\boldsymbol{\xi}_{t+1}\neq\boldsymbol{\xi}_{t}$. Using 60, $\mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right)<\mathrm{E}\left(\boldsymbol{\xi}_{t}\right)$. It follows that

$$A(\boldsymbol{\xi}_{t}) \neq \{\boldsymbol{\xi}_{t}\} \implies \forall \boldsymbol{\xi}_{t+1} \in A(\boldsymbol{\xi}_{t}), E(\boldsymbol{\xi}_{t+1}) < E(\boldsymbol{\xi}_{t})$$
 (63)

Therefore point-set-map A is strictly monotonic with respect to E.

19 Lemma 11 Hopfield MM Algorithm Update Rule

$$\underset{\boldsymbol{\xi}}{\arg\min} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right) = \underset{\boldsymbol{\xi} \in S}{\arg\min} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right) = \left\{\boldsymbol{X} \operatorname{softmax}\left(\beta \boldsymbol{X}^{T} \boldsymbol{\xi}_{t}\right)\right\}$$
(64)

where g is defined by 51, E_1 , E_2 are defined by 31, S is a convex and compact set defined by 32.

Proof. E_1 is strictly convex with respect to ξ , then $g(\xi, \xi_t)$ is also strictly convex with respect to ξ according to its definition 51. Then there exists only one minimum in 52, which is the global minimum. Let

$$\nabla_{\boldsymbol{\xi}}g\left(\boldsymbol{\xi},\boldsymbol{\xi}_{t}\right)=\mathbf{0}\tag{65}$$

Then

$$\nabla_{\boldsymbol{\xi}} \operatorname{E}_{1} (\boldsymbol{\xi}) = \nabla_{\boldsymbol{\xi}} \operatorname{E}_{2} (\boldsymbol{\xi}_{t})$$
(66)

Using 4, 31

$$\boldsymbol{\xi} = \boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^T \boldsymbol{\xi}_t \right) \tag{67}$$

Using 33

$$\boldsymbol{\xi} \in S \tag{68}$$

Therefore

$$\underset{\boldsymbol{\xi}}{\arg\min} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right) = \underset{\boldsymbol{\xi} \in S}{\arg\min} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right) = \left\{\boldsymbol{X} \operatorname{softmax}\left(\beta \boldsymbol{X}^{T} \boldsymbol{\xi}_{t}\right)\right\}$$
(69)

20 Lemma 12 Closedness Sufficient Condition

Given a continuous function $h(\mathbf{x}, \mathbf{y})$ on $X \times Y$, where X and Y are closed sets, define the point-to-set map $\mathcal{A}: X \to \mathscr{P}(Y)$ by

$$\mathcal{A}(\mathbf{x}) = \underset{\mathbf{y} \in Y}{\operatorname{arg\,min}} h\left(\mathbf{x}, \mathbf{y}\right) \tag{70}$$

If A is nonempty at each $x \in X$, then A is closed on X [4].

Proof. According to closedness definition, suppose

$$\begin{cases}
\mathbf{x}_{t} \to \mathbf{x}_{0} \text{ as } t \to \infty \\
\mathbf{y}_{t} \to \mathbf{y}_{0} \text{ as } t \to \infty \\
\mathbf{x}_{t} \in X \\
\mathbf{y}_{t} \in \mathcal{A} (\mathbf{x}_{t}) = \underset{\mathbf{y} \in Y}{\operatorname{arg min}} h (\mathbf{x}_{t}, \mathbf{y})
\end{cases}$$
(71)

Since X and Y are closed sets, $(\mathbf{x}_0, \mathbf{y}_0) \in X \times Y$. By continuity of h

$$h(\mathbf{x}_{t}, \mathbf{y}_{t}) \to h(\mathbf{x}_{0}, \mathbf{y}_{0}) \text{ as } t \to \infty$$

$$\forall \mathbf{y} \in Y, h(\mathbf{x}_{t}, \mathbf{y}) \to h(\mathbf{x}_{0}, \mathbf{y}) \text{ as } t \to \infty$$
(72)

Using the definition of limit, $\forall \mathbf{y} \in Y, \forall \varepsilon_2 > 0$, there is a t_{ε_2} such that $\forall t > t_{\varepsilon_2}$,

$$\frac{h(\mathbf{x}_t, \mathbf{y}_t) > h(\mathbf{x}_0, \mathbf{y}_0) - \varepsilon_2}{h(\mathbf{x}_t, \mathbf{y}) < h(\mathbf{x}_0, \mathbf{y}) + \varepsilon_2}$$
(73)

and

$$\mathbf{y}_{t} \in \mathcal{A}(\mathbf{x}_{t}) = \underset{\mathbf{y} \in Y}{\operatorname{arg\,min}} h(\mathbf{x}_{t}, \mathbf{y}) \implies h(\mathbf{x}_{t}, \mathbf{y}_{t}) \leqslant h(\mathbf{x}_{t}, \mathbf{y})$$
 (74)

Using 73, 74

$$h\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right) < h\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right) + \varepsilon_{2} \leqslant h\left(\mathbf{x}_{t}, \mathbf{y}\right) + \varepsilon_{2} < h\left(\mathbf{x}_{0}, \mathbf{y}\right) + 2\varepsilon_{2} \tag{75}$$

Hence

$$h\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right) \leqslant h\left(\mathbf{x}_{0}, \mathbf{y}\right) \tag{76}$$

It follows that

$$\mathbf{y}_{0} \in \mathcal{A}\left(\mathbf{x}_{0}\right) = \underset{\mathbf{y} \in Y}{\operatorname{arg\,min}} h\left(\mathbf{x}_{0}, \mathbf{y}\right)$$
 (77)

Therefore \mathcal{A} is closed on X.

21 Lemma 13 Convergence Theorem 2

Let a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0 \in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ through the iteration $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t)$. Also let a solution set $\Gamma \subset X$ be given. Suppose

- 1. All points $\xi_{t+1}, t \geqslant 0$ are in a compact set $\Omega \subset X$.
- 2. There is a continuous function $E: X \to \mathbb{R}$ such that:

(a)
$$\boldsymbol{\xi}_{t} \notin \Gamma \implies \mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right) < \mathrm{E}\left(\boldsymbol{\xi}_{t}\right), \forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right)$$

(b)
$$\boldsymbol{\xi}_{t} \in \Gamma \implies \mathrm{E}\left(\boldsymbol{\xi}_{t+1}\right) \leqslant \mathrm{E}\left(\boldsymbol{\xi}_{t}\right), \forall \boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right)$$

3. A is closed on X.

Then all limit points of the sequence $\{\xi_t\}_{t=0}^{\infty}$ are in Γ [5].

Proof. Given any convergent subsequence of $\{\xi_t\}_{t=0}^{\infty}$

$$\boldsymbol{\xi}_{t_k} \to \boldsymbol{\xi}^*, \text{ as } k \to \infty$$
 (78)

where $\xi^* \in \Omega$ is a limit point, consider subsequence:

$$\left\{\boldsymbol{\xi}_{t_k+1}\right\}_{k=0}^{\infty} \tag{79}$$

Since all points ξ_{t+1} , $t \ge 0$ are in the compact set Ω , then $\{\xi_{t_k+1}\}_{k=0}^{\infty}$ must have a convergent subsequence

$$\boldsymbol{\xi}_{t_{k_l}+1} \to \boldsymbol{\xi}^{**}, \text{ as } l \to \infty$$
 (80)

where $\boldsymbol{\xi}^{**} \in \Omega$ is a limit point.

Using 78

$$\boldsymbol{\xi}_{t_{k_{l}}} \to \boldsymbol{\xi}^{*}, \text{ as } l \to \infty$$
 (81)

It is known that

$$\boldsymbol{\xi}_{t_{k_l}+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t_{k_l}}\right) \tag{82}$$

Since A is closed on X, then using 80, 81 and 82

$$\boldsymbol{\xi}^{**} \in \mathcal{A}\left(\boldsymbol{\xi}^{*}\right) \tag{83}$$

Since

- 1. All points ξ_{t+1} , $t \ge 0$ are in the compact set Ω .
- 2. A is monotonic with respect to a continuous function E.

According to Lemma 9,

$$\lim_{t \to \infty} E(\boldsymbol{\xi}_t) = E(\boldsymbol{\xi}^{**}) = E(\boldsymbol{\xi}^*)$$
(84)

If $\boldsymbol{\xi}^* \notin \Gamma$, then $E(\boldsymbol{\xi}^{**}) < E(\boldsymbol{\xi}^*)$. A contradiction. Therefore $\boldsymbol{\xi}^* \in \Gamma$.

22 Lemma 14 Fixed Points Sufficient Condition

Let a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0 \in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ through the iteration $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t)$. Suppose

- 1. All points $\xi_{t+1}, t \geqslant 0$ are in a compact set $\Omega \subset X$.
- 2. A is strictly monotonic with respect to a continuous function E.
- 3. \mathcal{A} is closed on X.

Then all limit points of the sequence $\{\xi_t\}_{t=0}^{\infty}$ are fixed points of \mathcal{A} .

Proof. Let

$$\Gamma = \{ \boldsymbol{\xi} \in X | \mathcal{A}(\boldsymbol{\xi}) = \{ \boldsymbol{\xi} \} \}$$
(85)

Using Lemma 13, all limit points of the sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ are in Γ . Therefore all limit points are fixed points of \mathcal{A} .

23 Lemma 15 Stationary Points Sufficient Condition

Suppose $E_1(\boldsymbol{\xi})$, $E_2(\boldsymbol{\xi})$ are differentiable. And

$$\Omega = \{ \boldsymbol{\xi} : c_i(\boldsymbol{\xi}) \leqslant 0, i \in [m], d_j(\boldsymbol{\xi}) = 0, j \in [p] \}$$
(86)

 ξ^* is a generalized fixed point of 52, then ξ^* is a stationary point of the program in 50.

Proof. We have $\boldsymbol{\xi}^* \in \mathcal{A}(\boldsymbol{\xi}^*)$ and $\boldsymbol{\xi}^* \in \Omega$. Then there exist Lagrange multipliers $\{\eta_i^*\}_{i=1}^m \subset \mathbb{R}^+$ and $\{\mu_j^*\}_{j=1}^p \subset \mathbb{R}$ such that the following KKT conditions hold:

$$\begin{cases}
\nabla_{\boldsymbol{\xi}} \operatorname{E}_{1}\left(\boldsymbol{\xi}^{*}\right) - \nabla_{\boldsymbol{\xi}} \operatorname{E}_{2}\left(\boldsymbol{\xi}^{*}\right) + \sum_{i=1}^{m} \eta_{i}^{*} \nabla_{\boldsymbol{\xi}} c_{i}\left(\boldsymbol{\xi}^{*}\right) + \sum_{j=1}^{p} \mu_{j}^{*} \nabla_{\boldsymbol{\xi}} d_{j}\left(\boldsymbol{\xi}^{*}\right) = \mathbf{0} \\
c_{i}\left(\boldsymbol{\xi}^{*}\right) \leqslant 0, \eta_{i}^{*} \geqslant 0, c_{i}\left(\boldsymbol{\xi}^{*}\right) \eta_{i}^{*} = 0, \forall i \in [m] \\
d_{j}\left(\boldsymbol{\xi}^{*}\right) = 0, \mu_{j}^{*} \in \mathbb{R}, \forall j \in [p]
\end{cases}$$

is exactly KKT conditions of 50 which are satisfied by $\left(\boldsymbol{\xi}^*, \left\{\eta_i^*\right\}_{i=1}^m, \left\{\mu_j^*\right\}_{j=1}^p\right)$ and therefore, is a stationary point of 50.

24 Lemma 16 Convergence of Adjacent Point Differences

Let a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0 \in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ through the iteration $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t)$. Suppose [6]

- 1. All points ξ_{t+1} , $t \ge 0$ are in a compact set $\Omega \subset X$.
- 2. A is strictly monotonic with respect to a continuous function E.
- 3. A is closed on X.

Then

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \to 0$$
, as $t \to \infty$ (88)

Proof. Suppose

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \not\to 0, \text{ as } t \to \infty$$
 (89)

Then there exists a $\varepsilon_3 > 0$ and a subsequence

$$\left\{\boldsymbol{\xi}_{t_k}\right\}_{k=0}^{\infty} \tag{90}$$

such that

$$\left\|\boldsymbol{\xi}_{t_{k}+1} - \boldsymbol{\xi}_{t_{k}}\right\|_{2} \geqslant \varepsilon_{3}, \forall k \geqslant 0 \tag{91}$$

Since all points ξ_{t+1} , $t \ge 0$ are in a compact set Ω , then $\{\xi_{t_k}\}_{k=0}^{\infty}$ must have a convergent subsequence

$$\boldsymbol{\xi}_{t_{k_{l}}} \to \boldsymbol{\xi}^{*}, \text{ as } l \to \infty$$
 (92)

where $\boldsymbol{\xi}^* \in \Omega$ is a limit point.

Consider subsequence:

$$\left\{ \boldsymbol{\xi}_{t_{k_{l}}+1} \right\}_{k=0}^{\infty} \tag{93}$$

It must have a convergent subsequence

$$\boldsymbol{\xi}_{t_{k_l} + 1} \to \boldsymbol{\xi}^{**}, \text{ as } m \to \infty$$
 (94)

where $\boldsymbol{\xi}^{**} \in \Omega$ is a limit point. Using 92

$$\boldsymbol{\xi}_{t_{k_{i}}} \to \boldsymbol{\xi}^{*}, \text{ as } m \to \infty$$
 (95)

It is known that

$$\boldsymbol{\xi}_{t_{k_{l_m}}+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t_{k_{l_m}}}\right) \tag{96}$$

Since A is closed on X, using 94, 95 and 96

$$\boldsymbol{\xi}^{**} \in \mathcal{A}\left(\boldsymbol{\xi}^{*}\right) \tag{97}$$

Since

- 1. All points ξ_{t+1} , $t \ge 0$ are in the compact set Ω .
- 2. A is monotonic with respect to a continuous function E.

According to Lemma 9,

$$\lim_{t \to \infty} E(\boldsymbol{\xi}_t) = E(\boldsymbol{\xi}^{**}) = E(\boldsymbol{\xi}^*)$$
(98)

Since A is strictly monotonic with respect to E, using 97, 98

$$\mathcal{A}\left(\boldsymbol{\xi}^{*}\right) = \left\{\boldsymbol{\xi}^{*}\right\} \tag{99}$$

Hence

$$\boldsymbol{\xi}^* = \boldsymbol{\xi}^{**} \tag{100}$$

using 94, 95 and 100

$$\left\| \boldsymbol{\xi}_{t_{k_{l_m}}+1} - \boldsymbol{\xi}_{t_{k_{l_m}}} \right\|_2 \to 0, \text{ as } m \to \infty$$
 (101)

which is in contradiction with 91.

Therefore

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \to 0, \text{ as } t \to \infty$$
 (102)

25 Lemma 17 Compactness of Limit Points

Let a point-to-set map $\mathcal{A}: X \to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0 \in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ through the iteration $\boldsymbol{\xi}_{t+1} \in \mathcal{A}(\boldsymbol{\xi}_t)$.

Suppose all points $\xi_{t+1}, t \geqslant 0$ are in a compact set $\Omega \subset X$.

Let S_{lim} denotes the set of limit points of $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$.

Then S_{lim} is compact.

Proof. Since all points $\xi_{t+1}, t \geqslant 0$ are in a compact set Ω , then S_{lim} is not empty and

$$\forall \boldsymbol{\xi}_{lim} \in S_{lim}, \boldsymbol{\xi}_{lim} \in \Omega \tag{103}$$

Thus S_{lim} is bounded.

For any convergent subsequence of S_{lim}

$$\left\{ \boldsymbol{\xi}_{lim_k} \right\}_{k=0}^{\infty} \tag{104}$$

suppose

$$\boldsymbol{\xi}_{lim_k} \to \boldsymbol{\xi}_{lim}^* \text{ as } k \to \infty$$
 (105)

Since $\forall k \geqslant 0, \boldsymbol{\xi}_{lim_k}$ is a limit point of $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$, using the definition of limit,

$$\forall k \geqslant 0, \exists \boldsymbol{\xi}_{t_k} \in \{\boldsymbol{\xi}_t\}_{t=0}^{\infty}, \|\boldsymbol{\xi}_{t_k} - \boldsymbol{\xi}_{lim_k}\|_2 < \frac{1}{k+1}$$
 (106)

Then

$$\left\|\boldsymbol{\xi}_{t_{k}} - \boldsymbol{\xi}_{lim_{k}}\right\|_{2} \to 0, k \to \infty \tag{107}$$

That is

$$\boldsymbol{\xi}_{t_k} - \boldsymbol{\xi}_{lim_k} \to \mathbf{0}, k \to \infty \tag{108}$$

Using 105, 108

$$\boldsymbol{\xi}_{t_k} = \left(\boldsymbol{\xi}_{t_k} - \boldsymbol{\xi}_{lim_k}\right) + \boldsymbol{\xi}_{lim_k} \to \boldsymbol{\xi}_{lim}^*, k \to \infty \tag{109}$$

Since S_{lim} denotes the set of limit points of $\{\xi_t\}_{t=0}^{\infty}$, it follows that

$$\boldsymbol{\xi}^* \in S_{lim} \tag{110}$$

Therefore S_{lim} is closed. It is also bounded, so it is a compact set.

26 Lemma 18 Connectedness of Limit Points

Let a point-to-set map $\mathcal{A}:X\to \mathscr{P}(X)$ be a point-to-set map (an algorithm) that given a point $\boldsymbol{\xi}_0\in X$ generates a sequence $\{\boldsymbol{\xi}_t\}_{t=0}^\infty$ through the iteration $\boldsymbol{\xi}_{t+1}\in\mathcal{A}\left(\boldsymbol{\xi}_t\right)$. Suppose

- 1. All points $\xi_{t+1}, t \geqslant 0$ are in a compact set $\Omega \subset X$.
- 2. $\|\boldsymbol{\xi}_{t+1} \boldsymbol{\xi}_t\|_2 \to 0$, as $t \to \infty$
- 3. $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ does not converge.

Let S_{lim} denotes the set of limit points of $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$. Then S_{lim} is connected.

Proof. Since $\{\xi_t\}_{t=0}^{\infty}$ does not converge, then S_{lim} must contain at least two points. Suppose S_{lim} is not connected. Then it can be decomposed into the union of two nonempty closed sets of points without common points.

1. Define Two Subsets

Let

$$S_{lim} = S_{lim}^1 \cup S_{lim}^2 \tag{111}$$

where $S_{lim}^1 \cup S_{lim}^2$ are both nonempty, closed and:

$$S_{lim}^1 \cap S_{lim}^2 = \varnothing \tag{112}$$

2. Define Distance to Set

Let

$$d = \inf \left\{ \left\| \boldsymbol{\xi}_{lim}^{1} - \boldsymbol{\xi}_{lim}^{2} \right\|_{2} \left| \boldsymbol{\xi}_{lim}^{1} \in S_{lim}^{1}, \boldsymbol{\xi}_{lim}^{2} \in S_{lim}^{2} \right\} \right.$$
(113)

Suppose d=0, then there is a sequence $\left\{\boldsymbol{\xi}_{lim_k}^1\right\}_{k=1}^{\infty}$ that belongs to S_{lim}^1 , and a sequence $\left\{\boldsymbol{\xi}_{lim_k}^2\right\}_{k=1}^{\infty}$ that belongs to S_{lim}^2 , and

$$\boldsymbol{\xi}_{lim.}^{1} - \boldsymbol{\xi}_{lim.}^{2} \to \mathbf{0}, k \to \infty \tag{114}$$

Since S^1_{lim} and S^2_{lim} are closed, then each of the sequences $\left\{ \boldsymbol{\xi}^1_{lim_k} \right\}_{k=1}^{\infty}$ and $\left\{ \boldsymbol{\xi}^2_{lim_k} \right\}_{k=1}^{\infty}$ has a convergent subsequence. Using 114, two subsequences converge to the same limit point. Then this limit point belongs to both closed set S^1_{lim} and S^2_{lim} , which is a contradiction with 112. Thus d>0.

Since S^1_{lim} and S^2_{lim} are nonempty, then there exists two limit points $\boldsymbol{\xi}^{*1}_{lim} \in S^1_{lim}, \boldsymbol{\xi}^{*2}_{lim} \in S^2_{lim}$.

Suppose

$$\begin{cases} \boldsymbol{\xi}_{t_k}^1 \to \boldsymbol{\xi}_{lim}^{*1}, \text{ as } k \to \infty \\ \boldsymbol{\xi}_{t_k}^2 \to \boldsymbol{\xi}_{lim}^{*2}, \text{ as } k \to \infty \end{cases}$$
 (115)

where $Q_1=\left\{\boldsymbol{\xi}_{t_k}^1\right\}_{k=0}^{\infty}$ and $Q_2=\left\{\boldsymbol{\xi}_{t_k}^2\right\}_{k=0}^{\infty}$ are subsequences of $\left\{\boldsymbol{\xi}_t\right\}_{t=0}^{\infty}$. Since

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \to 0$$
, as $t \to \infty$ (116)

then

$$\exists t_d, \forall t > t_d, \|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 < \frac{d}{3}$$
 (117)

Let

$$\begin{cases}
d_1(\boldsymbol{\xi}) = \inf \left\{ \| \boldsymbol{\xi} - \boldsymbol{\xi}_{lim}^1 \|_2 | \boldsymbol{\xi} \in \{\boldsymbol{\xi}_t\}_{t=0}^{\infty}, \boldsymbol{\xi}_{lim}^1 \in S_{lim}^1 \right\} \\
d_2(\boldsymbol{\xi}) = \inf \left\{ \| \boldsymbol{\xi} - \boldsymbol{\xi}_{lim}^2 \|_2 | \boldsymbol{\xi} \in \{\boldsymbol{\xi}_t\}_{t=0}^{\infty}, \boldsymbol{\xi}_{lim}^2 \in S_{lim}^2 \right\}
\end{cases} (118)$$

Using 113, 118

$$\forall \boldsymbol{\xi} \in \left\{ \boldsymbol{\xi}_{t} \right\}_{t=0}^{\infty}, d_{1}\left(\boldsymbol{\xi}\right) + d_{2}\left(\boldsymbol{\xi}\right) \geqslant d \tag{119}$$

3. Create Subsequence

Now let's create a subsequence of $\{\xi_t\}_{t=0}^{\infty}$ whose limit points are outside both S_{lim}^1 and S_{lim}^2 :

For any arbitrarily large number K, Using 115, 118

$$\begin{cases}
\exists m > \max \{K, t_d\}, d_1(\boldsymbol{\xi}_m) < \frac{d}{3} \\
\exists n > m, d_2(\boldsymbol{\xi}_n) < \frac{d}{3}
\end{cases}$$
(120)

Define index set

$$I = \{i | m \leqslant i \leqslant n\} \tag{121}$$

Using 119, 120

$$\begin{cases}
d_2(\boldsymbol{\xi}_m) \geqslant \frac{2}{3}d \\
d_1(\boldsymbol{\xi}_n) \geqslant \frac{2}{3}d
\end{cases}$$
(122)

Using 120, 121, 122

$$\exists t_{k_1} = \min \left\{ i \in I \middle| d_1\left(\boldsymbol{\xi}_i\right) \geqslant \frac{d}{3} \right\} \tag{123}$$

Obviously:

$$\begin{cases}
t_{k_1} > m \\
d_1\left(\boldsymbol{\xi}_{t_{k_1}}\right) \geqslant \frac{d}{3} \\
d_1\left(\boldsymbol{\xi}_{t_{k_1}-1}\right) < \frac{d}{3}
\end{cases}$$
(124)

Using 119, 124

$$d_2\left(\boldsymbol{\xi}_{t_{k_1}-1}\right) \geqslant \frac{2}{3}d\tag{125}$$

Using 117, 125

$$d_2\left(\boldsymbol{\xi}_{t_{k_1}}\right) \geqslant \frac{d}{3} \tag{126}$$

Using 124, 126

$$\left.\begin{array}{l} \boldsymbol{\xi}_{t_{k_{1}}} \notin S_{lim}^{1} \\ \boldsymbol{\xi}_{t_{k_{1}}} \notin S_{lim}^{2} \end{array}\right\} \implies \boldsymbol{\xi}_{t_{k_{1}}} \notin S_{lim}^{1} \cup S_{lim}^{2}$$
(127)

Follow this way, there exists an infinite sequence of k_1, k_2, \cdots for which 127 holds. Therefore all limit points of this sequence are outside both S^1_{lim} and S^2_{lim} , which is in contradiction with 111. Therefore S_{lim} is connected.

27 Theorem 2 Global Convergence: Stationary Points

For the iteration 23 we have

$$E(\boldsymbol{\xi}_t) \to E(\boldsymbol{\xi}^*) = E^*, \text{ as } t \to \infty$$
 (128)

for some stationary point ξ^* . Furthermore

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \to 0, \text{ as } t \to \infty$$
 (129)

And either $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ converges, or, in the other case, the set of limit points of $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ is a connected and compact subset of $\mathcal{L}(\mathbf{E}^*)$, where $\mathcal{L}(a) = \{\boldsymbol{\xi} \in \mathcal{L} | \mathbf{E}(\boldsymbol{\xi}) = a\}$ and \mathcal{L} is the set of stationary points of the iteration 23. If $\mathcal{L}(\mathbf{E}^*)$ is finite, then any sequence $\{\boldsymbol{\xi}_t\}_{t=0}^{\infty}$ generated by the iteration 23 converges to some $\boldsymbol{\xi}^* \in \mathcal{L}(\mathbf{E}^*)$.

Proof. Define minimization problem:

$$\min_{\boldsymbol{\xi}} E(\boldsymbol{\xi}) = \min_{\boldsymbol{\xi}} \left(E_1(\boldsymbol{\xi}) - E_2(\boldsymbol{\xi}) \right) \tag{130}$$

where E_1 , E_2 are defined by 31.

1. Applying MM Algorithm

According to 51, 52, let

$$g(\boldsymbol{\xi}, \boldsymbol{\xi}_t) = \mathcal{E}_1(\boldsymbol{\xi}) - \mathcal{E}_2(\boldsymbol{\xi}_t) - (\nabla_{\boldsymbol{\xi}} \mathcal{E}_2(\boldsymbol{\xi}_t))^T (\boldsymbol{\xi} - \boldsymbol{\xi}_t)$$
(131)

$$\boldsymbol{\xi}_{t+1} \in \mathcal{A}\left(\boldsymbol{\xi}_{t}\right) = \underset{\boldsymbol{\xi}}{\operatorname{arg\,min}} g\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{t}\right)$$

$$= \underset{\boldsymbol{\xi}}{\operatorname{arg\,min}} g\left(\operatorname{E}_{1}\left(\boldsymbol{\xi}\right) - \left(\nabla_{\boldsymbol{\xi}}\operatorname{E}_{2}\left(\boldsymbol{\xi}_{t}\right)\right)^{T}\boldsymbol{\xi}\right)$$

$$t = 0, 1, \cdots$$
(132)

According to 64, the resulting update rule is:

$$\boldsymbol{\xi}_{t+1} = \boldsymbol{X} \operatorname{softmax} \left(\beta \boldsymbol{X}^T \boldsymbol{\xi}_t \right)$$
 (133)

which is equivalent to 23.

2. A is Strictly Monotonic

$$E_1(\boldsymbol{\xi}) = \frac{1}{2} \boldsymbol{\xi}^T \boldsymbol{\xi} + C_1$$
 is strictly convex.

 $E_2(\xi)$ is convex and differentiable using 4, 31.

Then using Lemma 10, A is strictly monotonic with respect to E.

3. A is Uniformly Compact

Using 64

All points $\xi_{t+1}, t \ge 0$ are in the compact set S using 64, therefore A is uniformly compact on \mathbb{R}^d .

4. \mathcal{A} is Closed

Let

$$h\left(\mathbf{x},\mathbf{y}\right) = g\left(\mathbf{y},\mathbf{x}\right) \tag{134}$$

It follows that

$$\mathcal{A}(\boldsymbol{\xi}) = \underset{\boldsymbol{\xi}}{\operatorname{arg\,min}} g(\boldsymbol{\xi}, \boldsymbol{\xi}_t) = \underset{\boldsymbol{\xi}}{\operatorname{arg\,min}} h(\boldsymbol{\xi}_t, \boldsymbol{\xi})$$
(135)

Now let's prove A is closed on \mathbb{R}^d :

(a) $\mathcal{A}(\boldsymbol{\xi}_t)$ is nonempty:

 $E_1(\boldsymbol{\xi}) = \frac{1}{2}\boldsymbol{\xi}^T\boldsymbol{\xi} + C_1$ is continuous, thus given any $\boldsymbol{\xi}_t$, $g(\boldsymbol{\xi}, \boldsymbol{\xi}_t)$ is continuous at every $\boldsymbol{\xi}$ in the compact set S according to its definition 51. By the Weierstrass theorem, $g(\boldsymbol{\xi}, \boldsymbol{\xi}_t)$ has minimum on S. Using 64, this minimum is global minimum on \mathbb{R}^d . Hence $\mathcal{A}(\boldsymbol{\xi}_t)$ is nonempty at any $\boldsymbol{\xi}_t$.

(b) $h(\mathbf{x}, \mathbf{y})$ is continuous:

 $E_1(\boldsymbol{\xi})$ is continuous. $\nabla_{\boldsymbol{\xi}} E_2(\boldsymbol{\xi}) = \boldsymbol{X}$ softmax $(\beta \boldsymbol{X}^T \boldsymbol{\xi})$ is continuous. Hence $g(\mathbf{x}, \mathbf{y})$ is continuous at any \mathbf{x}, \mathbf{y} according to its definition 51. Then $h(\mathbf{x}, \mathbf{y})$ is continuous.

According to Lemma 12, A is closed on \mathbb{R}^d .

5. Limit Points are Fixed Points

Since

- (a) All points ξ_{t+1} , $t \ge 0$ are in the compact set S using 64.
- (b) \mathcal{A} is strictly monotonic with respect to E.
- (c) \mathcal{A} is closed on \mathbb{R}^d .

Using Lemma 14, all limit points of the sequence $\{\xi_t\}_{t=0}^{\infty}$ are fixed points of 52.

6. Limit Points are Stationary Points

Using Lemma 15, all fixed points of 52 are stationary points of 50.

7. Adjacent Point Differences are Convergent

Using Lemma 16

$$\|\boldsymbol{\xi}_{t+1} - \boldsymbol{\xi}_t\|_2 \to 0, \text{ as } t \to \infty$$
 (136)

8. Limit Points are Compact

Using Lemma 17, the set of limit points of $\{\xi_t\}_{t=0}^{\infty}$ is compact.

9. Limit Points are Connected

Using Lemma 18, if $\{\xi_t\}_{t=0}^{\infty}$ does not converge, then the set of limit points of $\{\xi_t\}_{t=0}^{\infty}$ is connected.

10. Convergence Sufficient Condition

Suppose $\{\xi_t\}_{t=0}^{\infty}$ does not converge, then the set of limit points of $\{\xi_t\}_{t=0}^{\infty}$ must contain at least two limit points, and is connected.

Since $\mathcal{L}\left(E^{*}\right)$ is finite, then the set of limit points can be decomposed into the union of two nonempty closed sets of points without common points. Hence it is not connected, which is a contradiction.

Therefore, if $\mathcal{L}\left(\mathbf{E}^{*}\right)$ is finite, then any sequence $\left\{ \boldsymbol{\xi}_{t}\right\} _{t=0}^{\infty}$ generated by the iteration 23 converges to some $\boldsymbol{\xi}^{*}\in\mathcal{L}\left(\mathbf{E}^{*}\right)$.

References

- [1] Hubert Ramsauer et al. "Hopfield networks is all you need". In: *arXiv preprint arXiv:2008.02217* (2020).
- [2] Alan L Yuille and Anand Rangarajan. "The concave-convex procedure (CCCP)". In: *Advances in neural information processing systems* 14 (2001).

- [3] Bharath K Sriperumbudur and Gert RG Lanckriet. "On the Convergence of the Concave-Convex Procedure." In: *Nips*. Vol. 9. Citeseer. 2009, pp. 1759–1767.
- [4] Asela Gunawardana, William Byrne, and Michael I Jordan. "Convergence Theorems for Generalized Alternating Minimization Procedures." In: *Journal of machine learning research* 6.12 (2005).
- [5] W.I. Zangwill. *Nonlinear Programming: A Unified Approach*. Prentice-Hall international series in management. Prentice-Hall, 1969. ISBN: 9780136235798.
- [6] Robert R Meyer. "Sufficient conditions for the convergence of monotonic mathematical programming algorithms". In: *Journal of computer and system sciences* 12.1 (1976), pp. 108–121.