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1 Introduction
This article provides a comprehensive explanation of the global convergence theory
of the Modern Hopfield Network [1], covering energy and stationary points. It also
extends the discussion of the initial point ξ0 from a bounded subset in the original
paper to any vector in Rd.

2 Notations
1. The p-norm of a vector is denoted: ∥·∥p ,1 ⩽ p

2. Let β > 0, β ∈ R

3. Let [N ] = {1, · · · , N}
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3 Softmax Function
p (x) = softmax (βx)

pi = [softmax (βx)]i =
exp (βxi)∑N
k=1 exp (βxk)

(1)

where xi ∈ RN .

4 Log-Sum-Exp Function

lse (β,x) = β−1 ln

(
N∑
k=1

exp (βxk)

)
(2)

where xi ∈ RN .

5 Lemma 1 LSE Gradient
∇x lse (β,x) = softmax (βx) (3)

where x ∈ RN .

∇ξ lse
(
β,XTξ

)
= X softmax

(
βXTξ

)
(4)

where X ∈ Rd×N , ξ ∈ Rd.

6 Lemma 2 LSE Hessian
The Jacobian Js (x) of p (x) = softmax (βx) is

Js (x) =
∂ softmax (βx)

∂x
= β

(
diag (p)− ppT

)
(5)

where x ∈ RN .
The Jacobian J (ξ) of Xp

(
XTξ

)
= X softmax

(
βXTξ

)
is

J (ξ) =
∂
(
X softmax

(
βXTξ

))
∂ξ

= βX
(
diag (p)− ppT

)
XT = XJsX

T

(6)
where X ∈ Rd×N , ξ ∈ Rd.
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7 Lemma 3 LSE Hessian is Symmetric and Positive
Semi-Definite

The Jacobian Js (x) of p (x) = softmax (βx) is symmetric and positive
semi-definite where x ∈ RN .
The Jacobian J (ξ) of Xp

(
XTξ

)
= X softmax

(
βXTξ

)
is symmetric and

positive semi-definite where X ∈ Rd×N , ξ ∈ Rd.

Proof. According to 5, 6, they are symmetric. Given any x ∈ RN , we have

xTJsx = βxT
(
diag (p)− ppT

)
x = β

∑
i

pixi
2 −

(∑
i

pixi

)2
 ⩾ 0 (7)

Given any ξ ∈ Rd, we have

ξTJξ = ξTXJsX
Tξ =

(
XTξ

)T
Js
(
XTξ

)
⩾ 0 (8)

Hence they are positive semi-definite.

8 Lemma 4 LSE is Convex
lse (β,x) is convex with respect to x where x ∈ RN .
lse
(
β,XTξ

)
is convex with respect to ξ where X ∈ Rd×N , ξ ∈ Rd.

Proof. The Jacobian of the softmax is Hessian of the lse according to 3, 4. The
Jacobian of the softmax is positive semi-definite according to Lemma 3. Therefore
lse is convex.

9 Definitions

9.1 Point-to-set Map
A point-to-set map A from a set X into a set Y is defined as
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A : X → P(Y ) (9)

which assigns a subset of Y to each point of X , where P(Y ) denotes the power
set of Y .

9.2 Closed
Suppose X and Y are two topological spaces. A point-to-set map A : X → P(Y )
is said to be closed at x0 ∈ X if:

xt → x0 as t → ∞
yt → y0 as t → ∞
xt ∈ X
yt ∈ A (xt)

 =⇒ y0 ∈ A (x0) (10)

A point-to-set map A is said to be closed on S ⊂ X if it is closed at every point of
S.

9.3 Fixed Point
A fixed point of a point-to-set map

A : X → P(X) (11)

is any point x ∈ X for which

A (x) = {x} (12)

A generalized fixed point of A is any point x ∈ X for which

x ∈ A (x) (13)

9.4 Uniformly Compact
A point-to-set map A : X → P(Y ) is said to be uniformly compact on X if there
exists a compact set H ⊂ Y independent of x such that:

A (x) ⊂ H,∀x ∈ X (14)
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9.5 Monotonic
Let

E : X → R (15)

be a continuous function. The map

A : X → P (X) (16)

is said to be monotonic with respect to E at x ∈ X if

∀y ∈ A (x) ,E (y) ⩽ E (x) (17)

A is said to be strictly monotonic with respect to E at x ∈ X if

A (x) ̸= {x} =⇒ ∀y ∈ A (x) ,E (y) < E (x) (18)

9.6 Global Convergence
Let X be a set and ξ0 ∈ X a given point. Then an algorithm, A, with initial point
ξ0 is a point-to-set map A : X → P (X) which generates a sequence {ξt}

∞
t=0 via

the rule

ξt+1 ∈ A (ξt) , t = 0, 1, · · · (19)

A is said to be globally convergent if: Given any chosen initial point ξ0, the
sequence {ξt}

∞
t=0 generated by ξt+1 ∈ A (ξt) , t = 0, 1, · · · (or a subsequence)

converges to a point for which a necessary condition of optimality holds.

10 Modern Hopfield Network
We have patterns that are represented by the matrix:

X = (x1, . . . ,xN) (20)

where xi ∈ Rd. Thus X ∈ Rd×N . The largest norm of a pattern is:

M = max
i∈[N ]

∥xi∥2 (21)
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The query or state of the Hopfield Network is ξ ∈ Rd. Define energy E (ξ) for a
continuous query or state ξ:

E (ξ) = − lse
(
β,XTξ

)
+

1

2
ξTξ + β−1 lnN +

1

2
M2 (22)

11 New Update Rule
ξt+1 = F (ξt) = Xp = X softmax

(
βXTξt

)
(23)

where

p = softmax
(
βXTξt

)
(24)

12 Lemma 5 CCCP Algorithm
Consider an energy function E : X → R:

E (ξ) = E1 (ξ)− E2 (ξ) (25)

where E1 and E2 are differentiable convex functions of ξ respectively and X is
a convex set. Then the discrete CCCP (Concave Convex Procedure Algorithm)
algorithm [2]

ξt+1 ∈ A (ξt) , t = 0, 1, · · · (26)

given by:

∇ξ E1

(
ξt+1

)
= ∇ξ E2 (ξt) (27)

guarantees A to be monotonic with respect to E.
In addition, if E1 or E2 is strictly convex function, and ξt+1 ̸= ξt, then

E
(
ξt+1

)
< E (ξt) (28)

Proof. E1 and E2 are convex functions, so that ∀t ⩾ 0,
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E1 (ξt) ⩾ E1

(
ξt+1

)
+
(
∇E1

(
ξt+1

))T (
ξt − ξt+1

)
E2

(
ξt+1

)
⩾ E2 (ξt) + (∇E2 (ξt))

T (ξt+1 − ξt
)

∇E1

(
ξt+1

)
= ∇E2 (ξt)


=⇒ E1 (ξt) + E2

(
ξt+1

)
⩾ E1

(
ξt+1

)
+ E2 (ξt)

=⇒ E1

(
ξt+1

)
− E2

(
ξt+1

)
⩽ E1 (ξt)− E2 (ξt)

=⇒ E
(
ξt+1

)
⩽ E (ξt)

(29)

Therefore A is monotonic with respect to E.
In addition, if E1 is strictly convex function, and ξt+1 ̸= ξt, then

E1 (ξt) > E1

(
ξt+1

)
+
(
∇E1

(
ξt+1

))T (
ξt − ξt+1

)
E2

(
ξt+1

)
⩾ E2 (ξt) + (∇E2 (ξt))

T (ξt+1 − ξt
)

∇E1

(
ξt+1

)
= ∇E2 (ξt)


=⇒ E1 (ξt) + E2

(
ξt+1

)
> E1

(
ξt+1

)
+ E2 (ξt)

=⇒ E1

(
ξt+1

)
− E2

(
ξt+1

)
< E1 (ξt)− E2 (ξt)

=⇒ E
(
ξt+1

)
< E (ξt)

(30)

13 Lemma 6 Convex Concave Decomposition
The energy function E (ξ) is the difference of a strictly convex function E1 (ξ) and
a convex function E2 (ξ):

E (ξ) = E1 (ξ)− E2 (ξ)

E1 (ξ) =
1

2
ξTξ + β−1 lnN +

1

2
M2 =

1

2
ξTξ + C1

E2 (ξ) = lse
(
β,XTξ

) (31)

where C1 does not depend on ξ.

Proof.
1

2
ξTξ is a strictly convex function.

According to Lemma 4, lse is a convex function.
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14 Lemma 7 Constraint Set
Let

S = {ξ|∥ξ∥2 ⩽ M} (32)

which is a convex and compact set.
Then

∀t ⩾ 0, ξt+1 ∈ S (33)

where ξt+1 is from update rule 23.

Proof.

∥∥ξt+1

∥∥
2
= ∥Xp∥2 =

∥∥∥∥∥
N∑
i=1

pixi

∥∥∥∥∥
2

⩽
N∑
i=1

pi ∥xi∥
2

⩽
N∑
i=1

piM = M (34)

15 Lemma 8 Constraint Function
Define function

c (ξ) = ξTξ −M (35)

Then

S = {ξ : c (ξ) ⩽ 0} (36)

where S is defined by 32.

Proof.
∀ξ, c (ξ) ⩽ 0 ⇐⇒ ξ ∈ S (37)
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16 Lemma 9 Convergence Theorem 1
Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt). Suppose

1. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .

2. A is monotonic with respect to a continuous function E.

Then E (ξt) → E (ξ∗) for t → ∞ and a limit point ξ∗.

Proof. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X . Hence {ξt}
∞
t=0 must

have a convergent subsequence

ξtk → ξ∗, as k → ∞ (38)

where ξ∗ ∈ Ω is a limit point. Continuity of E provides

E
(
ξtk
)
→ E (ξ∗) , as k → ∞ (39)

A is monotonic with respect to E. Hence

∀t ⩾ 0,E (ξt) ⩾ E (ξ∗) (40)

Using 39 and the definition of limit, given ε1 > 0, there is a tε1 such that

E
(
ξtε1

)
< E (ξ∗) + ε1 (41)

A is monotonic with respect to E, then

∀t > tε1 ,E (ξt) ⩽ E
(
ξtε1

)
< E (ξ∗) + ε1 (42)

40, 42 then yield

∀t > tε1 , |E (ξt)− E (ξ∗)| < ε1 (43)

Therefore

E (ξt) → E (ξ∗) , as t → ∞ (44)
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17 Theorem 1 Global Convergence: Energy
The update rule 23 converges globally: For ξt+1 = F (ξt), the energy E (ξt) →
E (ξ∗) for t → ∞ and a limit point ξ∗.

Proof. Define minimization problem:

min
ξ

E (ξ) = min
ξ

(E1 (ξ)− E2 (ξ)) (45)

where E1,E2 are defined by 31.

1. Applying CCCP Algorithm
According to 27, let

∇ξ E1

(
ξt+1

)
= ∇ξ E2 (ξt) (46)

Using 4, 31, the resulting update rule is:

ξt+1 = X softmax
(
βXTξt

)
(47)

which is equivalent to 23.

Let

A (ξt) =
{
X softmax

(
βXTξt

)}
(48)

2. Energy Convergence
Since

(a) According to 32, 33, all points ξt+1, t ⩾ 0 are in a compact set S.

(b) According to Lemma 5, A is monotonic with respect to E.

(c) Obviously E is continuous.

then using Lemma 9

E (ξt) → E (ξ∗) , as t → ∞ (49)
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18 Lemma 10 MM Algorithm
Consider the optimization function E : X → R:

E (ξ) = E1 (ξ)− E2 (ξ) , ξ ∈ Ω (50)

where E1 and E2 are both convex, E2 is differentiable, and Ω ⊂ X is a convex set.
Let

g (ξ, ξt) = E1 (ξ)− E2 (ξt)− (∇ξ E2 (ξt))
T (ξ − ξt) (51)

Then the MM (Majorization-Minimization) algorithm [3]

ξt+1 ∈ A (ξt) = argmin
ξ∈Ω

g (ξ, ξt)

= argmin
ξ∈Ω

(
E1 (ξ)− (∇ξ E2 (ξt))

T ξ
)

t = 0, 1, · · ·

(52)

guarantees A to be monotonic with respect to E.
In addition, if E1 is strictly convex, then A is strictly monotonic with respect to E.

Proof. Since E2 is convex and differentiable, then the first order characterization
of convexity holds:

E2 (ξ) ⩾ E2 (ξt) + (∇ξ E2 (ξt))
T (ξ − ξt) (53)

Therefore:

E (ξ) = E1 (ξ)− E2 (ξ)

⩽ E1 (ξ)− E2 (ξt)− (∇ξ E2 (ξt))
T (ξ − ξt)

= g (ξ, ξt)

(54)

According to 52

∀ξt+1 ∈ A (ξt) , g
(
ξt+1, ξt

)
⩽ g (ξt, ξt) (55)

Using 51, 54, 55

∀ξt+1 ∈ A (ξt) ,E
(
ξt+1

)
⩽ g

(
ξt+1, ξt

)
⩽ g (ξt, ξt) = E (ξt) (56)

Thus
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∀ξt+1 ∈ A (ξt) ,E
(
ξt+1

)
⩽ E (ξt) (57)

Therefore A is monotonic with respect to E.
If E1 is strictly convex with respect to ξ, then g (ξ, ξt) is also strictly convex with
respect to ξ according to its definition 51. Since Ω is convex, then there exists only
one minimum in 52, which is the global minimum.
Hence

∀ξt+1 ∈ A (ξt) , ξt+1 ̸= ξt =⇒ g
(
ξt+1, ξt

)
< g (ξt, ξt) (58)

Using 51, 54, 58

∀ξt+1 ∈ A (ξt) , ξt+1 ̸= ξt =⇒
E
(
ξt+1

)
⩽ g

(
ξt+1, ξt

)
< g (ξt, ξt) = E (ξt)

(59)

That is

∀ξt+1 ∈ A (ξt) , ξt+1 ̸= ξt =⇒ E
(
ξt+1

)
< E (ξt) (60)

If A (ξt) ̸= {ξt}, suppose ξt ∈ A (ξt), then ∃ξ′

t+1 ∈ A (ξt) , ξ
′

t+1 ̸= ξt. Using 58

g
(
ξ

′

t+1, ξt

)
< g (ξt, ξt) (61)

Hence

ξt+1 ̸∈ A (ξt) = argmin
ξ∈Ω

g (ξ, ξt) (62)

which is a contradiction. Thus if A (ξt) ̸= {ξt}, then ξt+1 ̸∈ A (ξt). That is
∀ξt+1 ∈ A (ξt) , ξt+1 ̸= ξt. Using 60, E

(
ξt+1

)
< E (ξt). It follows that

A (ξt) ̸= {ξt} =⇒ ∀ξt+1 ∈ A (ξt) ,E
(
ξt+1

)
< E (ξt) (63)

Therefore point-set-map A is strictly monotonic with respect to E.
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19 Lemma 11 Hopfield MM Algorithm Update Rule
argmin

ξ
g (ξ, ξt) = argmin

ξ∈S
g (ξ, ξt) =

{
X softmax

(
βXTξt

)}
(64)

where g is defined by 51, E1,E2 are defined by 31, S is a convex and compact set
defined by 32.

Proof. E1 is strictly convex with respect to ξ, then g (ξ, ξt) is also strictly convex
with respect to ξ according to its definition 51. Then there exists only one minimum
in 52, which is the global minimum.
Let

∇ξg (ξ, ξt) = 0 (65)

Then

∇ξ E1 (ξ) = ∇ξ E2 (ξt) (66)

Using 4, 31

ξ = X softmax
(
βXTξt

)
(67)

Using 33

ξ ∈ S (68)

Therefore

argmin
ξ

g (ξ, ξt) = argmin
ξ∈S

g (ξ, ξt) =
{
X softmax

(
βXTξt

)}
(69)

20 Lemma 12 Closedness Sufficient Condition
Given a continuous function h (x,y) on X × Y , where X and Y are closed sets,
define the point-to-set map A : X → P(Y ) by

A (x) = argmin
y∈Y

h (x,y) (70)

If A is nonempty at each x ∈ X , then A is closed on X [4].
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Proof. According to closedness definition, suppose
xt → x0 as t → ∞
yt → y0 as t → ∞
xt ∈ X
yt ∈ A (xt) = argmin

y∈Y
h (xt,y)

(71)

Since X and Y are closed sets, (x0,y0) ∈ X × Y .
By continuity of h

h (xt,yt) → h (x0,y0) as t → ∞
∀y ∈ Y, h (xt,y) → h (x0,y) as t → ∞

(72)

Using the definition of limit, ∀y ∈ Y, ∀ε2 > 0, there is a tε2 such that ∀t > tε2 ,

h (xt,yt) > h (x0,y0)− ε2

h (xt,y) < h (x0,y) + ε2
(73)

and

yt ∈ A (xt) = argmin
y∈Y

h (xt,y) =⇒ h (xt,yt) ⩽ h (xt,y) (74)

Using 73, 74

h (x0,y0) < h (xt,yt) + ε2 ⩽ h (xt,y) + ε2 < h (x0,y) + 2ε2 (75)

Hence

h (x0,y0) ⩽ h (x0,y) (76)

It follows that

y0 ∈ A (x0) = argmin
y∈Y

h (x0,y) (77)

Therefore A is closed on X .
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21 Lemma 13 Convergence Theorem 2
Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt). Also let a solution set Γ ⊂ X be given. Suppose

1. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .

2. There is a continuous function E : X → R such that:

(a) ξt ̸∈ Γ =⇒ E
(
ξt+1

)
< E (ξt) ,∀ξt+1 ∈ A (ξt)

(b) ξt ∈ Γ =⇒ E
(
ξt+1

)
⩽ E (ξt) ,∀ξt+1 ∈ A (ξt)

3. A is closed on X .

Then all limit points of the sequence {ξt}
∞
t=0 are in Γ [5].

Proof. Given any convergent subsequence of {ξt}
∞
t=0

ξtk → ξ∗, as k → ∞ (78)

where ξ∗ ∈ Ω is a limit point, consider subsequence:{
ξtk+1

}∞
k=0

(79)

Since all points ξt+1, t ⩾ 0 are in the compact set Ω, then
{
ξtk+1

}∞
k=0

must have a
convergent subsequence

ξtkl+1 → ξ∗∗, as l → ∞ (80)

where ξ∗∗ ∈ Ω is a limit point.
Using 78

ξtkl
→ ξ∗, as l → ∞ (81)

It is known that

ξtkl+1 ∈ A
(
ξtkl

)
(82)

Since A is closed on X , then using 80, 81 and 82

ξ∗∗ ∈ A (ξ∗) (83)

Since
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1. All points ξt+1, t ⩾ 0 are in the compact set Ω.

2. A is monotonic with respect to a continuous function E.

According to Lemma 9,

lim
t→∞

E (ξt) = E (ξ∗∗) = E (ξ∗) (84)

If ξ∗ ̸∈ Γ, then E (ξ∗∗) < E (ξ∗). A contradiction. Therefore ξ∗ ∈ Γ.

22 Lemma 14 Fixed Points Sufficient Condition
Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt). Suppose

1. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .

2. A is strictly monotonic with respect to a continuous function E.

3. A is closed on X .

Then all limit points of the sequence {ξt}
∞
t=0 are fixed points of A.

Proof. Let

Γ = {ξ ∈ X|A (ξ) = {ξ}} (85)

Using Lemma 13, all limit points of the sequence {ξt}
∞
t=0 are in Γ.

Therefore all limit points are fixed points of A.

23 Lemma 15 Stationary Points Sufficient Condition
Suppose E1 (ξ) ,E2 (ξ) are differentiable.
And

Ω = {ξ : ci (ξ) ⩽ 0, i ∈ [m], dj (ξ) = 0, j ∈ [p]} (86)

ξ∗ is a generalized fixed point of 52, then ξ∗ is a stationary point of the the program
in 50.
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Proof. We have ξ∗ ∈ A (ξ∗) and ξ∗ ∈ Ω. Then there exist Lagrange multipliers
{η∗i }

m
i=1 ⊂ R+ and

{
µ∗
j

}p
j=1

⊂ R such that the following KKT conditions hold:


∇ξ E1 (ξ

∗)−∇ξ E2 (ξ
∗) +

∑m
i=1 η

∗
i∇ξci (ξ

∗) +
∑p

j=1 µ
∗
j∇ξdj (ξ

∗) = 0

ci (ξ
∗) ⩽ 0, η∗i ⩾ 0, ci (ξ

∗) η∗i = 0,∀i ∈ [m]
dj (ξ

∗) = 0, µ∗
j ∈ R, ∀j ∈ [p]

(87)
is exactly KKT conditions of 50 which are satisfied by

(
ξ∗, {η∗i }

m
i=1 ,

{
µ∗
j

}p
j=1

)
and therefore, is a stationary point of 50.

24 Lemma 16 Convergence of Adjacent Point
Differences

Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt). Suppose [6]

1. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .

2. A is strictly monotonic with respect to a continuous function E.

3. A is closed on X .

Then ∥∥ξt+1 − ξt
∥∥
2
→ 0, as t → ∞ (88)

Proof. Suppose ∥∥ξt+1 − ξt
∥∥
2
̸→ 0, as t → ∞ (89)

Then there exists a ε3 > 0 and a subsequence{
ξtk
}∞
k=0

(90)

such that

19



∥∥ξtk+1 − ξtk
∥∥
2
⩾ ε3,∀k ⩾ 0 (91)

Since all points ξt+1, t ⩾ 0 are in a compact set Ω, then
{
ξtk
}∞
k=0

must have a
convergent subsequence

ξtkl
→ ξ∗, as l → ∞ (92)

where ξ∗ ∈ Ω is a limit point.
Consider subsequence: {

ξtkl+1

}∞

k=0
(93)

It must have a convergent subsequence

ξtklm+1 → ξ∗∗, as m → ∞ (94)

where ξ∗∗ ∈ Ω is a limit point.
Using 92

ξtklm
→ ξ∗, as m → ∞ (95)

It is known that

ξtklm+1 ∈ A
(
ξtklm

)
(96)

Since A is closed on X , using 94, 95 and 96

ξ∗∗ ∈ A (ξ∗) (97)

Since

1. All points ξt+1, t ⩾ 0 are in the compact set Ω.

2. A is monotonic with respect to a continuous function E.

According to Lemma 9,

lim
t→∞

E (ξt) = E (ξ∗∗) = E (ξ∗) (98)

Since A is strictly monotonic with respect to E, using 97, 98
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A (ξ∗) = {ξ∗} (99)

Hence

ξ∗ = ξ∗∗ (100)

using 94, 95 and 100 ∥∥∥ξtklm+1 − ξtklm

∥∥∥
2
→ 0, as m → ∞ (101)

which is in contradiction with 91.
Therefore ∥∥ξt+1 − ξt

∥∥
2
→ 0, as t → ∞ (102)

25 Lemma 17 Compactness of Limit Points
Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt).
Suppose all points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .
Let Slim denotes the set of limit points of {ξt}

∞
t=0.

Then Slim is compact.

Proof. Since all points ξt+1, t ⩾ 0 are in a compact set Ω, then Slim is not empty
and

∀ξlim ∈ Slim, ξlim ∈ Ω (103)

Thus Slim is bounded.
For any convergent subsequence of Slim{

ξlimk

}∞
k=0

(104)

suppose

ξlimk
→ ξ∗lim as k → ∞ (105)
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Since ∀k ⩾ 0, ξlimk
is a limit point of {ξt}

∞
t=0, using the definition of limit,

∀k ⩾ 0,∃ξtk ∈ {ξt}
∞
t=0,

∥∥ξtk − ξlimk

∥∥
2
<

1

k + 1
(106)

Then ∥∥ξtk − ξlimk

∥∥
2
→ 0, k → ∞ (107)

That is

ξtk − ξlimk
→ 0, k → ∞ (108)

Using 105, 108

ξtk =
(
ξtk − ξlimk

)
+ ξlimk

→ ξ∗lim, k → ∞ (109)

Since Slim denotes the set of limit points of {ξt}
∞
t=0, it follows that

ξ∗ ∈ Slim (110)

Therefore Slim is closed. It is also bounded, so it is a compact set.

26 Lemma 18 Connectedness of Limit Points
Let a point-to-set map A : X → P(X) be a point-to-set map (an algorithm)
that given a point ξ0 ∈ X generates a sequence {ξt}

∞
t=0 through the iteration

ξt+1 ∈ A (ξt).
Suppose

1. All points ξt+1, t ⩾ 0 are in a compact set Ω ⊂ X .

2.
∥∥ξt+1 − ξt

∥∥
2
→ 0, as t → ∞

3. {ξt}
∞
t=0 does not converge.

Let Slim denotes the set of limit points of {ξt}
∞
t=0.

Then Slim is connected.

Proof. Since {ξt}
∞
t=0 does not converge, then Slim must contain at least two points.

Suppose Slim is not connected. Then it can be decomposed into the union of two
nonempty closed sets of points without common points.
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1. Define Two Subsets
Let

Slim = S1
lim ∪ S2

lim (111)

where S1
lim ∪ S2

lim are both nonempty, closed and:

S1
lim ∩ S2

lim = ∅ (112)

2. Define Distance to Set
Let

d = inf
{∥∥ξ1lim − ξ2lim

∥∥
2

∣∣ξ1lim ∈ S1
lim, ξ

2
lim ∈ S2

lim

}
(113)

Suppose d = 0, then there is a sequence
{
ξ1limk

}∞
k=1

that belongs to S1
lim,

and a sequence
{
ξ2limk

}∞
k=1

that belongs to S2
lim, and

ξ1limk
− ξ2limk

→ 0, k → ∞ (114)

Since S1
lim and S2

lim are closed, then each of the sequences
{
ξ1limk

}∞
k=1

and{
ξ2limk

}∞
k=1

has a convergent subsequence. Using 114, two subsequences
converge to the same limit point. Then this limit point belongs to both closed
set S1

lim and S2
lim, which is a contradiction with 112. Thus d > 0.

Since S1
lim and S2

lim are nonempty, then there exists two limit points ξ∗1lim ∈
S1
lim, ξ

∗2
lim ∈ S2

lim.

Suppose {
ξ1tk → ξ∗1lim, as k → ∞
ξ2tk → ξ∗2lim, as k → ∞

(115)

where Q1 =
{
ξ1tk
}∞
k=0

and Q2 =
{
ξ2tk
}∞
k=0

are subsequences of {ξt}
∞
t=0.

Since

∥∥ξt+1 − ξt
∥∥
2
→ 0, as t → ∞ (116)
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then

∃td,∀t > td,
∥∥ξt+1 − ξt

∥∥
2
<

d

3
(117)

Let {
d1 (ξ) = inf

{∥∥ξ − ξ1lim
∥∥
2

∣∣ξ ∈ {ξt}
∞
t=0, ξ

1
lim ∈ S1

lim

}
d2 (ξ) = inf

{∥∥ξ − ξ2lim
∥∥
2

∣∣ξ ∈ {ξt}
∞
t=0, ξ

2
lim ∈ S2

lim

} (118)

Using 113, 118

∀ξ ∈ {ξt}
∞
t=0, d1 (ξ) + d2 (ξ) ⩾ d (119)

3. Create Subsequence
Now let’s create a subsequence of {ξt}

∞
t=0 whose limit points are outside

both S1
lim and S2

lim:

For any arbitrarily large number K, Using 115, 118
∃m > max {K, td} , d1 (ξm) <

d

3

∃n > m, d2 (ξn) <
d

3

(120)

Define index set

I = {i|m ⩽ i ⩽ n} (121)

Using 119, 120 
d2 (ξm) ⩾

2

3
d

d1 (ξn) ⩾
2

3
d

(122)

Using 120, 121, 122

∃tk1 = min

{
i ∈ I

∣∣∣∣d1 (ξi) ⩾ d

3

}
(123)
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Obviously: 
tk1 > m

d1

(
ξtk1

)
⩾

d

3

d1

(
ξtk1−1

)
<

d

3

(124)

Using 119, 124

d2

(
ξtk1−1

)
⩾

2

3
d (125)

Using 117, 125

d2

(
ξtk1

)
⩾

d

3
(126)

Using 124, 126

ξtk1
̸∈ S1

lim

ξtk1
̸∈ S2

lim

}
=⇒ ξtk1

̸∈ S1
lim ∪ S2

lim (127)

Follow this way, there exists an infinite sequence of k1, k2, · · · for which 127
holds. Therefore all limit points of this sequence are outside both S1

lim and
S2
lim, which is in contradiction with 111. Therefore Slim is connected.

27 Theorem 2 Global Convergence: Stationary
Points

For the iteration 23 we have

E (ξt) → E (ξ∗) = E∗, as t → ∞ (128)

for some stationary point ξ∗. Furthermore
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∥∥ξt+1 − ξt
∥∥
2
→ 0, as t → ∞ (129)

And either {ξt}
∞
t=0 converges, or, in the other case, the set of limit points of {ξt}

∞
t=0

is a connected and compact subset of L (E∗), where L (a) = {ξ ∈ L|E (ξ) = a}
and L is the set of stationary points of the iteration 23. If L (E∗) is finite, then any
sequence {ξt}

∞
t=0 generated by the iteration 23 converges to some ξ∗ ∈ L (E∗).

Proof. Define minimization problem:

min
ξ

E (ξ) = min
ξ

(E1 (ξ)− E2 (ξ)) (130)

where E1,E2 are defined by 31.

1. Applying MM Algorithm
According to 51, 52, let

g (ξ, ξt) = E1 (ξ)− E2 (ξt)− (∇ξ E2 (ξt))
T (ξ − ξt) (131)

ξt+1 ∈ A (ξt) = argmin
ξ

g (ξ, ξt)

= argmin
ξ

g
(
E1 (ξ)− (∇ξ E2 (ξt))

T ξ
)

t = 0, 1, · · ·

(132)

According to 64, the resulting update rule is:

ξt+1 = X softmax
(
βXTξt

)
(133)

which is equivalent to 23.

2. A is Strictly Monotonic

E1 (ξ) =
1

2
ξTξ + C1 is strictly convex.

E2 (ξ) is convex and differentiable using 4, 31.

Then using Lemma 10, A is strictly monotonic with respect to E.
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3. A is Uniformly Compact
Using 64

All points ξt+1, t ⩾ 0 are in the compact set S using 64, therefore A is
uniformly compact on Rd.

4. A is Closed
Let

h (x,y) = g (y,x) (134)

It follows that

A (ξ) = argmin
ξ

g (ξ, ξt) = argmin
ξ

h (ξt, ξ) (135)

Now let’s prove A is closed on Rd:

(a) A (ξt) is nonempty:

E1 (ξ) =
1

2
ξTξ + C1 is continuous, thus given any ξt, g (ξ, ξt) is

continuous at every ξ in the compact set S according to its definition
51. By the Weierstrass theorem, g (ξ, ξt) has minimum on S. Using 64,
this minimum is global minimum on Rd. Hence A (ξt) is nonempty at
any ξt.

(b) h (x,y) is continuous:
E1 (ξ) is continuous. ∇ξ E2 (ξ) = X softmax

(
βXTξ

)
is continuous.

Hence g (x,y) is continuous at any x,y according to its definition 51.
Then h (x,y) is continuous.

According to Lemma 12, A is closed on Rd.

5. Limit Points are Fixed Points
Since

(a) All points ξt+1, t ⩾ 0 are in the compact set S using 64.

(b) A is strictly monotonic with respect to E.

(c) A is closed on Rd.
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Using Lemma 14, all limit points of the sequence {ξt}
∞
t=0 are fixed points of

52.

6. Limit Points are Stationary Points
Using Lemma 15, all fixed points of 52 are stationary points of 50.

7. Adjacent Point Differences are Convergent
Using Lemma 16

∥∥ξt+1 − ξt
∥∥
2
→ 0, as t → ∞ (136)

8. Limit Points are Compact
Using Lemma 17, the set of limit points of {ξt}

∞
t=0 is compact.

9. Limit Points are Connected
Using Lemma 18, if {ξt}

∞
t=0 does not converge, then the set of limit points

of {ξt}
∞
t=0 is connected.

10. Convergence Sufficient Condition
Suppose {ξt}

∞
t=0 does not converge, then the set of limit points of {ξt}

∞
t=0

must contain at least two limit points, and is connected.

Since L (E∗) is finite, then the set of limit points can be decomposed into the
union of two nonempty closed sets of points without common points. Hence
it is not connected, which is a contradiction.

Therefore, if L (E∗) is finite, then any sequence {ξt}
∞
t=0 generated by the

iteration 23 converges to some ξ∗ ∈ L (E∗).
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